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The generalized tunneling formula with the simple model
for the broadening in the contacts gives surprisingly good re-
sults for the majority of RTD structures. It is just as fast as
the standard coherent tunneling simulators and much more
versatile. It is easily generalized to multi-band and multi-
dimensional models. The multi-band generalization of the
theory and the e�ect of the optical potential are described.
resonant tunneling, quantum device modeling

The theory of the generalized open system bound-
ary conditions [1,2] leads to a generalized tunneling
formula which is the basis for our quantum device
simulator [3,4]. The generalized boundary condi-
tions allow one to take a large structure and par-
tition it into two large reservoirs and a short de-
vice provided that the reservoir regions are well
equilibrated with the n+ contacts (see Fig. (1)).
These de�ned reservoirs have a complicated density
of states which must be calculated numerically. The
density of states or spectral function is displayed by
the gray-scale in Fig. (1). The partitioning of the
system serves two purposes: (1) it allows one to in-
ject into the device from quantized emitter states in
a coherent tunneling formula [5], and (2) it reduces
the device domain for the computationally intensive
calculations required to include scattering.
The extension of the previous discussions [1,2]

based on the single band tight binding model is
straightforward. The scalar quantities become block
matrices in a localized orbital multi-band model.
Using the standard sp3s� basis [6] the current equa-
tion for a device de�ned between and including lay-
ers 1 through N becomes
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where the �'s include the e�ect of the states in
the reservoirs, fL(R) is the Fermi factor of the left
(right) contact. The �'s and G's are block matri-
ces of dimension equal to the number of orbitals per
layer and the trace is over the orbital indices. The
subscripts refer to the layer number.
To calculate the Green function, we use the ex-

ample of a three layer device, fi; jg 2 f1; :::; 3g; GR
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where �RB1;1 = t1;0g
R
0;0t0;1 and �B1;1 = t1;0 i[gR0;0 �

gA0;0] t0;1. All of the symbols above represent block
matrices of dimension equal to the number of or-
bitals per layer. gR0;0 is the surface Green function
for the semi-in�nite region ending at layer 0 imme-
diately to the left of the device.
Starting with the bulk surface Green function in

the 
at band region of the left lead [7], the sur-
face Green function at layer 0 is calculated with the
recursive Green function method. Using our bound-
ary self energy, �RBi;i , we have the recursive Green
function algorithm
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An imaginary potential, i�, is included in the di-
agonal Hamiltonian matrix elements of the contact
regions to account for the e�ects of scattering in-
duced broadening of any quantized states that form
there.
The power of this approach is demonstrated in

Fig. (1). Such a device can now be treated within
the framework of a single electron tunneling for-
mula, Eq. (1). We have obtained similar results
in a multi-band sp3s� calculation.
The key that makes the approach work is the op-

tical potential included in the contacts. What is
its e�ect? For devices with 3D emitters, ie. where
there is no quantization in the emitter, the e�ect is
small. For such a device, the conduction band pro-
�le, spectral function, and I-V for 4 di�erent values
of � is shown in Fig. (2). As � increases, the peak
current is slightly decreased and the valley current
is slightly increased.
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FIG. 1. (a) Conduction band pro�le and correspond-
ing density of states for a device with many quantized
emitter states. (b) Corresponding experimental and
simulated I-V characteristic.
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FIG. 2. (a) Conduction band pro�le and correspond-
ing density of states for a device with a bulk 3D emitter.
(b) I-V characteristic calculated with 4 di�erent values
of the optical potential.

For structures with both 2D states in the emit-
ter and 2D states in the device, the e�ect is large.
The I-V calculated with 4 di�erent values of � cor-
responding to the device of Fig. (1) is shown in Fig.
(3). As � is reduced, the I-V becomes a series of nar-
row peaks whose width is �nally determined be the
intrinsic linewidth of the resonances. The necessity
of including broadening factors has been observed
before, 5 meV for Turley et al. [8] and 0.2 - 16 meV
for Chen et al. [9]. For such devices, the optical
potential in the contacts covers over a number of
omissions: (1) Correct numerical integration over
the transverse momentum [10]. Initial calculations
indicate that the value of � can be reduced by a fac-
tor of 1/2 when the transverse integration is done
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correctly. (2) The broadening of the device states
due to scattering, and (3) the actual broadening of
the emitter states due to scattering. Note well that
as the optical potential model is improved, every-
thing else must be improved to maintain the same
accuracy of the results since the omissions that were
covered by the simple model are no longer covered.
Incremental improvements are di�cult.
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FIG. 3. I-V characteristic calculated with 4 di�erent

values of the optical potential for the device of Fig. (1).

The generalized tunneling formula with the sim-
ple model for the broadening in the contacts gives
surprisingly good results for the majority of RTD
structures. It is just as fast as the standard coherent
tunneling simulators [11] and much more versatile.
It is also easily generalized to 2D and 3D simulators.
It is useful as a fast design tool and as the starting
point for more sophisticated calculations.
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